FEATURES

- Direct interface to C-MOS, TTL, etc.
- High-speed switching
- No secondary breakdown.

DESCRIPTION

N -channel enhancement mode vertical D-MOS transistor in a SOT23 envelope. It is designed for use as a Surface Mounted Device (SMD) in thin and thick-film circuits, with applications in relay, high-speed and line transformer drivers.

PINNING - SOT23

PIN	DESCRIPTION
1	gate
2	source
3	drain

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
V_{DS}	drain-source voltage		60	V
I_{D}	drain current	DC value	180	mA
$\mathrm{R}_{\mathrm{DS} \text { (on) }}$	drain-source on-resistance	$\mathrm{I}_{\mathrm{D}}=500 \mathrm{~mA}$ $\mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$	5	Ω
$\mathrm{~V}_{\mathrm{GS}(\text { th) }}$	gate-source threshold voltage	$\mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$ $\mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}$	3	V

PIN CONFIGURATION

Marking code: 702
Fig. 1 Simplified outline and symbol.

N-channel vertical D-MOS transistor

LIMITING VALUES
In accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{DS}	drain-source voltage		-	60	V
$\pm \mathrm{V}_{\mathrm{GSO}}$	gate-source voltage	open drain	-	40	V
I_{D}	drain current	DC value	-	180	mA
I_{DM}	drain current	peak value	-	800	mA
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ (note 1) (note 2)	-	300	mW
			-	-65	150

Notes

1. Mounted on a ceramic substrate measuring $10 \times 8 \times 0.7 \mathrm{~mm}$.
2. Mounted on a printed circuit board.

THERMAL RESISTANCE

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
$R_{\text {th } j-a}$	from junction to ambient	note 1	430	K/W
		note 2	500	K/W

Notes

1. Mounted on a ceramic substrate measuring $10 \times 8 \times 0.7 \mathrm{~mm}$.
2. Mounted on a printed circuit board.

N-channel vertical D-MOS transistor

2N7002

CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
$\mathrm{V}_{\text {(BR) }{ }^{\text {DSS }}}$	drain-source breakdown voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$	60	90	-	V
$\mathrm{I}_{\text {DSS }}$	drain-source leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{DS}}=48 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \end{aligned}$	-	-	1	$\mu \mathrm{A}$
$\pm \mathrm{I}_{\text {GSS }}$	gate-source leakage current	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{DS}}=0 \\ \pm \mathrm{V}_{\mathrm{GS}}=15 \mathrm{~V} \\ \hline \end{array}$	-	-	10	nA
$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	gate-source threshold voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}} \end{aligned}$	0.8	-	3	V
$\mathrm{R}_{\text {DS(on) }}$	drain-source on-resistance	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{D}}=500 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \end{aligned}$	-	3.5	5	Ω
		$\begin{aligned} & \hline \mathrm{I}_{\mathrm{D}}=75 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V} \end{aligned}$	-	-	5.3	Ω
$\left\|\mathrm{Y}_{\mathrm{fs}}\right\|$	transfer admittance	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{D}}=200 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V} \\ & \hline \end{aligned}$	100	200	-	mS
$\mathrm{C}_{\text {iss }}$	input capacitance	$\begin{aligned} & V_{D S}=10 \mathrm{~V} \\ & V_{G S}=0 \\ & f=1 \mathrm{MHz} \end{aligned}$	-	25	40	pF
$\mathrm{C}_{\text {oss }}$	output capacitance	$\begin{aligned} & V_{D S}=10 \mathrm{~V} \\ & V_{G S}=0 \\ & f=1 \mathrm{MHz} \end{aligned}$	-	22	30	pF
$\mathrm{C}_{\text {rss }}$	feedback capacitance	$\begin{aligned} & V_{\mathrm{DS}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{GS}}=0 \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	-	6	10	pF

Switching times (see Figs 2 and 3)

ton	turn-on time	$\mathrm{l}_{\mathrm{D}}=200 \mathrm{~mA}$ $\mathrm{~V}_{\mathrm{DD}}=50 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{GS}}=0$ to 10 V	-	-	10	ns
toff	turn-off time	$\mathrm{I}=200 \mathrm{~mA}$ $\mathrm{~V}_{\mathrm{DD}}=50 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{GS}}=0$ to 10 V	-	-	15	ns

