

MOS FIELD EFFECT TRANSISTOR

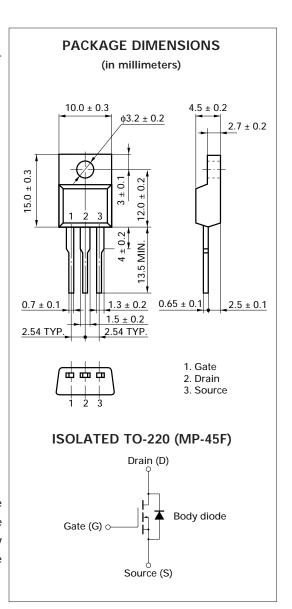
2SK2141

SWITCHING N-CHANNEL POWER MOS FET INDUSTRIAL USE

DESCRIPTION

The 2SK2141 is N-channel Power MOS Field Effect Transistor designed for high voltage switching applications.

FEATURES


- Low On-state Resistance RDS(on) = 1.1 Ω MAX. (VGS = 10 V, ID = 3.0 A)
- Low Ciss Ciss = 1150 pF TYP.
- High Avalanche Capability Ratings
- Isolated TO-220 (MP-45F) Package

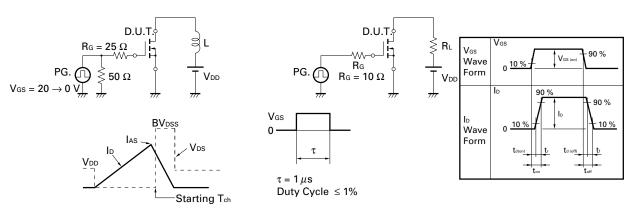
ABSOLUTE MAXIMUM RATINGS ($T_A = 25$ °C)

Drain to Source Voltage	V_{DSS}	600	V
Gate to Source Voltage	Vgss	±30	V
Drain Current (DC)	ID (DC)	±6.0	Α
Drain Current (pulse)	D (pulse)*	±24	Α
Total Power Dissipation (Tc = 25 °C)	P _{T1}	35	W
Total Power Dissipation (Ta = 25 °C)	P _{T2}	2.0	W
Storage Temperature	Tstg -55	to +150	°C
Channel Temperature	Tch	150	°C
Single Avalanche Current	las**	6.0	Α
Single Avalanche Energy	Eas**	12	mJ

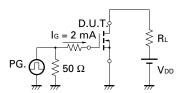
*PW \leq 10 μ s, Duty Cycle \leq 1%

The diode connected between the gate and source of the transistor serves as a protector against ESD. When this device is actually used, an additional protection circuit is externally required if a voltage exceeding the rated voltage may be applied to this device.

^{**}Starting T_{ch} = 25 °C, R_G = 25 Ω , V_{GS} = 20 V \rightarrow 0



ELECTRICAL CHARACTERISTICS (TA = 25 °C)


						T.
CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
Drain to Source On-state Resistance	R _{DS(on)}		0.8	1.1	Ω	Vgs = 10 V, ID = 3.0 A
Gate to Source Cutoff Voltage	V _{GS(off)}	2.5		3.5	V	V _{DS} = 10 V, I _D = 1 mA
Forward Transfer Admittance	yfs	2.0			S	V _{DS} = 10 V, I _D = 3.0 A
Drain Leakage Current	IDSS			100	μΑ	V _{DS} = 600V, V _{GS} = 0
Gate to Source Leakage Current	Igss			±100	nA	$V_{GS} = \pm 30 \text{ V}, V_{DS} = 0$
Input Capacitance	Ciss		1150		pF	V _{DS} = 10 V
Output Capacitance	Coss		260		pF	Vgs = 0
Reverse Transfer Capacitance	Crss		60		pF	f = 1 MHz
Turn-On Delay Time	td(on)		15		ns	Vgs = 10 V
Rise Time	tr		15		ns	V _{DD} = 150 V
Turn-Off Delay Time	td(off)		75		ns	$I_D = 3.0 \text{ A, Rg} = 10 \Omega$
Fall Time	tf		13		ns	R _L = 37.5 Ω
Total Gate Charge	Q _G		40		nC	Vgs = 10 V
Gate to Source Charge	Qgs		6.0		nC	ID = 6.0 A
Gate to Drain Charge	Q _{GD}		20		nC	V _{DD} = 480 V
Diode Forward Voltage	V _F (S-D)		1.0		V	IF = 6.0 A, VGS = 0
Reverse Recovery Time	trr		370		ns	IF = 6.0 A
Reverse Recovery Charge	Qrr		1.5		μC	di/dt = 50 A/μs

Test Circuit 1: Avalanche Capability

Test Circuit 2: Switching Time

Test Circuit 3: Gate Charge

The application circuits and their parameters are for references only and are not intended for use in actual design-in's.