SWITCHING
 N-CHANNEL POWER MOS FET INDUSTRIAL USE

DESCRIPTION

The 2SK2275 is N-channel Power MOS Field Effect Transistor designed for high voltage switching applications.

FEATURES

- Low On-state Resistance

Ros(on) $=2.8 \Omega \mathrm{MAX} .(\mathrm{VGS}=10 \mathrm{~V}, \mathrm{Id}=2.0 \mathrm{~A})$

- Low Ciss Ciss $=1000 \mathrm{pF}$ TYP.
- High Avalanche Capability Ratings

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)			
Drain to Source Voltage	Vdss	900	V
Gate to Source Voltage	Vgss	± 30	V
Drain Current (DC)	ID (DC)	± 3.5	A
Drain Current (pulse)	ld (pulse)*	* ± 14	A
Total Power Dissipation ($\mathrm{Tc}=25^{\circ} \mathrm{C}$)	PT1	35	W
Total Power Dissipation ($\mathrm{Ta}_{\text {a }}=2{ }^{\circ} \mathrm{C}$)	Pt2	2.0	W
Storage Temperature	$\mathrm{T}_{\text {stg }} \quad-5$	-55 to +150	${ }^{\circ} \mathrm{C}$
Channel Temperature	Tch	150	${ }^{\circ} \mathrm{C}$
Single Avalanche Current	IAs**	3.5	A
Single Avalanche Energy	EAS**	22	mJ

*PW $\leq 10 \mu \mathrm{~s}$, Duty Cycle $\leq 1 \%$
**Starting Tch $=25^{\circ} \mathrm{C}, \mathrm{Rg}_{\mathrm{c}}=25 \Omega, \mathrm{~V}$ gs $=20 \mathrm{~V} \rightarrow 0$

The diode connected between the gate and source of the transistor serves as a protector against ESD. When this device is actually used, an additional protection circuit is externally required if a voltage exceeding the rated voltage may be applied to this device.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
Drain to Source On-state Resistance	RDS(on)		2.2	2.8	Ω	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{ld}=2 \mathrm{~A}$
Gate to Source Cutoff Voltage	VGS(off)	2.5		3.5	V	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{ld}=1 \mathrm{~mA}$
Forward Transfer Admittance	$\left\|y_{\text {fs }}\right\|$	1.0			S	$V_{D S}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{~A}$
Drain Leakage Current	Idss			100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DS}}=900 \mathrm{~V}, \mathrm{~V}_{\mathrm{Gs}}=0$
Gate to Source Leakage Current	Igss			± 10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{Gs}}= \pm 30 \mathrm{~V}, \mathrm{~V}$ ds $=0$
Input Capacitance	Ciss		1000		pF	$\mathrm{V} \mathrm{Ds}=10 \mathrm{~V}$
Output Capacitance	Coss		170		pF	$V_{G S}=0$
Reverse Transfer Capacitance	Crss		60		pF	$\mathrm{f}=1 \mathrm{MHz}$
Turn-On Delay Time	tdon)		20		ns	$\mathrm{V}_{\mathrm{Gs}}=10 \mathrm{~V}$
Rise Time	tr		20		ns	$V_{D D}=150 \mathrm{~V}$
Turn-Off Delay Time	td(off)		90		ns	$\mathrm{ID}=2 \mathrm{~A}, \mathrm{R}_{\mathrm{g}}=10 \Omega$
Fall Time	tf		20		ns	$\mathrm{RL}=75 \Omega$
Total Gate Charge	Qg		42		nC	V Gs $=10 \mathrm{~V}$
Gate to Source Charge	Qgs		6.0		nC	$\mathrm{ID}=3.5 \mathrm{~A}$
Gate to Drain Charge	Qgd		20		nC	$V_{D D}=450 \mathrm{~V}$
Diode Forward Voltage	$V_{\text {FIS-D) }}$		0.9		V	$\mathrm{I}_{\mathrm{F}}=3.5 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$
Reverse Recovery Time	trr		480		ns	$1_{\text {F }}=3.5 \mathrm{~A}$
Reverse Recovery Charge	Qrr		2.5		$\mu \mathrm{C}$	$\mathrm{di} / \mathrm{dt}=50 \mathrm{~A} / \mu \mathrm{s}$

Test Circuit 1: Avalanche Capability

Test Circuit 2: Switching Time

Test Circuit 3: Gate Charge

The application circuits and their parameters are for references only and are not intended for use in actual design-in's.

