DATA SHEET

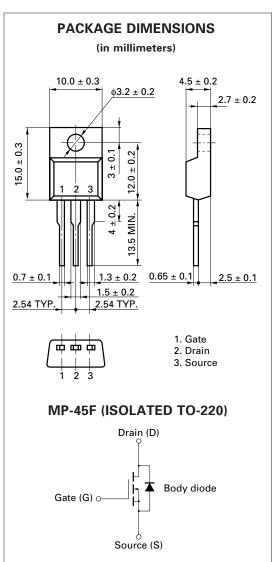
MOS FIELD EFFECT TRANSISTOR

2SK2275

SWITCHING N-CHANNEL POWER MOS FET INDUSTRIAL USE

DESCRIPTION

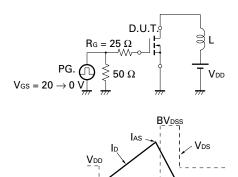
The 2SK2275 is N-channel Power MOS Field Effect Transistor designed for high voltage switching applications.

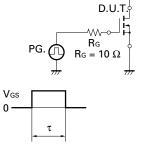

FEATURES

- Low On-state Resistance
 - $R_{\text{DS(on)}}$ = 2.8 Ω MAX. (Vgs = 10 V, ID = 2.0 A)
- Low C_{iss} C_{iss} = 1 000 pF TYP.
- High Avalanche Capability Ratings

ABSOLUTE MAXIMUM RATINGS (T_A = 25 °C)

Drain to Source Voltage	Vdss	900	V		
Gate to Source Voltage	Vgss	±30	V		
Drain Current (DC)	D (DC)	±3.5	А		
Drain Current (pulse)	D (pulse)*	±14	А		
Total Power Dissipation (Tc = 25 $^{\circ}$ C)	P T1	35	W		
Total Power Dissipation (Ta = 25 $^{\circ}$ C)	P T2	2.0	W		
Storage Temperature	Tstg -55	to +150	°C		
Channel Temperature	Tch	150	°C		
Single Avalanche Current	las**	3.5	А		
Single Avalanche Energy	Eas**	22	mJ		
*PW \leq 10 μ s, Duty Cycle \leq 1%					
**Starting T _{ch} = 25 °C, R _G = 25 Ω , V _{GS} = 20 V \rightarrow 0					

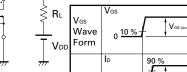

The diode connected between the gate and source of the transistor serves as a protector against ESD. When this device is actually used, an additional protection circuit is externally required if a voltage exceeding the rated voltage may be applied to this device.

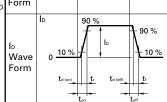


ELECTRICAL CHARACTERISTICS (T_A = 25 °C)

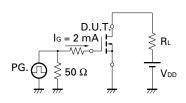
CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
Drain to Source On-state Resistance	RDS(on)		2.2	2.8	Ω	Vgs = 10 V, Id = 2 A
Gate to Source Cutoff Voltage	VGS(off)	2.5		3.5	V	V _{DS} = 10 V, I _D = 1 mA
Forward Transfer Admittance	y _{fs}	1.0			S	Vds = 20 V, Id = 2 A
Drain Leakage Current	loss			100	μA	$V_{DS} = 900 V, V_{GS} = 0$
Gate to Source Leakage Current	lgss			±10	μA	$V_{GS} = \pm 30 \text{ V}, \text{ V}_{DS} = 0$
Input Capacitance	Ciss		1 000		pF	$V_{DS} = 10 V$
Output Capacitance	Coss		170		pF	Vgs = 0
Reverse Transfer Capacitance	Crss		60		pF	f = 1 MHz
Turn-On Delay Time	td(on)		20		ns	Vgs = 10 V
Rise Time	tr		20		ns	V _{DD} = 150 V
Turn-Off Delay Time	td(off)		90		ns	$I_D = 2 A, R_G = 10 \Omega$
Fall Time	tr		20		ns	RL = 75 Ω
Total Gate Charge	Q _G		42		nC	Vgs = 10 V
Gate to Source Charge	Q _{GS}		6.0		nC	ID = 3.5 A
Gate to Drain Charge	Q _{GD}		20		nC	V _{DD} = 450 V
Diode Forward Voltage	VF(S-D)		0.9		V	IF = 3.5 A, VGS = 0
Reverse Recovery Time	trr		480		ns	1F = 3.5 A
Reverse Recovery Charge	Qrr		2.5		μC	di/dt = 50 A/µs

Test Circuit 1: Avalanche Capability




Test Circuit 2: Switching Time

0


Starting Tch

90 %

Test Circuit 3: Gate Charge

The application circuits and their parameters are for references only and are not intended for use in actual design-in's.