Unit: mm

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π -MOSIII)

2SK2700

Chopper Regulator, DC–DC Converter and Motor Drive Applications

- Low drain–source ON resistance : $R_{DS (ON)} = 3.7 \Omega$ (typ.)
 - High forward transfer admittance $|Y_{fs}| = 2.6 \text{ S} (typ.)$
 - Low leakage current : $I_{DSS} = 100 \ \mu A \ (max) \ (V_{DS} = 720 \ V)$
- Enhancement mode : $V_{th} = 2.0$ to $4.0 \text{ V} (V_{DS} = 10 \text{ V}, I_D = 1 \text{ mA})$

Absolute Maximum Ratings (Ta = 25°C)

Characteristics		Symbol	Rating	Unit
Drain-source voltage		V _{DSS}	900	V
Drain-gate voltage (Re	_{SS} = 20 kΩ)	V _{DGR}	900	V
Gate-source voltage		V _{GSS}	±30	V
Drain aumant	DC (Note 1)	۱ _D	3	А
Drain current	Pulse (Note 1)	I _{DP}	9	А
Drain power dissipatior	n (Tc = 25°C)	PD	40	W
Single pulse avalanche	energy (Note 2)	E _{AS}	295	mJ
Avalanche current		I _{AR}	3	А
Repetitive avalanche e	nergy (Note 3)	E _{AR}	4	mJ
Channel temperature		T _{ch}	150	°C
Storage temperature ra	inge	T _{stg}	-55 to 150	°C

Weight: 1.9 g (typ.)

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Thermal Characteristics

Characteristics	Symbol	Max	Unit
Thermal resistance, channel to case	R _{th (ch–c)}	3.125	°C / W
Thermal resistance, channel to ambient	R _{th (ch–a)}	62.5	°C / W

Note 1: Ensure that the channel temperature does not exceed 150°C.

Note 2: V_{DD} = 90 V, T_{ch} = 25°C (initial), L = 60.0 mH, R_G = 25 Ω , I_{AR} = 3 A

Note 3: Repetitive rating: pulse width limited by maximum channel temperature

This transistor is an electrostatic-sensitive device. Please handle with caution.

Electrical Characteristics (Ta = 25°C)

Charac	teristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage cu	rrent	I _{GSS}	V_{GS} = ±30 V, V_{DS} = 0 V	_	_	±10	μA
Gate-source bre	eakdown voltage	V _(BR) GSS	I_{G} = ±10 µA, V_{DS} = 0 V	±30			V
Drain cut-off cur	rent	I _{DSS}	V _{DS} = 720 V, V _{GS} = 0 V	_	_	100	μA
Drain-source br	eakdown voltage	V (BR) DSS	I _D = 10 mA, V _{GS} = 0 V	900			V
Gate threshold w	roltage	V _{th}	V _{DS} = 10 V, I _D = 1 mA			4.0	V
Drain-source OI	N resistance	R _{DS (ON)}	V _{GS} = 10 V, I _D = 1.5 A	_	3.7	4.3	Ω
Forward transfer	admittance	Y _{fs}	V _{DS} = 20 V, I _D = 1.5 A	0.65	2.6	_	S
Input capacitance	capacitance C _{iss}			_	750	_	pF
Reverse transfer capacitance		C _{rss}	V_{DS} = 25 V, V_{GS} = 0 V, f = 1 MHz	-	10	_	
Output capacitance		C _{oss}			70	_	
Switching time	Rise time	tr	$V_{GS} \stackrel{10V}{_{0V}} \prod_{\substack{D = 1.5A \\ 0 \\ C}} V_{out} $	_	15		ns
	Turn-on time	t _{on}		_	55	_	
	Fall time	t _f			30	_	
	Turn–off time	t _{off}	$V_{DD} = 200V$ Duty $\leq 1\%$, t _w = 10µs	_	110	_	
Total gate charge (gate–source plus gate–drain)		Qg		_	25	_	nC
Gate-source charge		Q _{gs}	V _{DD} ≈ 400 V, V _{GS} = 10 V, I _D = 3 A	—	13	—	
Gate-drain ("miller") Charge		Q _{gd}		_	12	_	

Source–Drain Ratings and Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Continuous drain reverse current (Note 1)	I _{DR}	—	_	_	3	А
Pulse drain reverse current (Note 1)	I _{DRP}	—			9	А
Forward voltage (diode)	V _{DSF}	I _{DR} = 3 A, V _{GS} = 0 V	-	-	-1.9	V
Reverse recovery time	t _{rr}	I _{DR} = 3 A, V _{GS} = 0 V		1100		ns
Reverse recovery charge	Qrr	dl _{DR} / dt = 100 A / μs		7.2		μC

Marking

Note 4: A line under a Lot No. identifies the indication of product Labels. Not underlined: [[Pb]]/INCLUDES > MCV Underlined: [[G]]/RoHS COMPATIBLE or [[G]]/RoHS [[Pb]]

Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. The RoHS is the Directive 2002/95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

2009-09-29