

MOS FIELD EFFECT TRANSISTOR 2SK3115

SWITCHING N-CHANNEL POWER MOS FET INDUSTRIAL USE

DESCRIPTION

The 2SK3115 is N-Channel DMOS FET device that features a low gate charge and excellent switching haracteristics, and designed for high voltage applications such as switching power supply, AC adapter.

FEATURES

- Low gate charge
 QG = 26 nC TYP. (VDD = 450 V, VGS = 10 V, ID = 6.0 A)
- Gate voltage rating ±30 V
- Low on-state resistance RDS(on) = 1.2 Ω MAX. (VGs = 10 V, ID = 3.0 A)
- · Avalanche capability ratings

ORDERING INFORMATION

PART NUMBER	PACKAGE
2SK3115	Isolated TO-220

★ (Isolated TO-220)

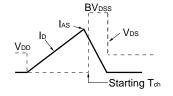
ABSOLUTE MAXIMUM RATINGS (TA = 25°C)

Drain to Source Voltage (Ves = 0 V)	VDSS	600	V	
Gate to Source Voltage (Vps = 0 V)	Vgss	±30	V	
Drain Current (DC) (Tc = 25°C)	ID(DC)	±6.0	Α	
Drain Current (pulse) Note1	D(pulse)	±24	Α	
Total Power Dissipation (TA = 25°C)	P _{T1}	2.0	W	
Total Power Dissipation (Tc = 25°C)	P _{T2}	35	W	
Channel Temperature	Tch	150	°C	
Storage Temperature	Tstg	-55 to +150	°C	
Single Avalanche Current Note2	las	6.0	Α	
Single Avalanche Energy Note2	Eas	24	mJ	

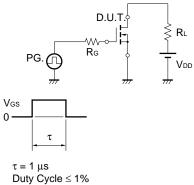
Notes 1. PW \leq 10 μ s, Duty Cycle \leq 1%

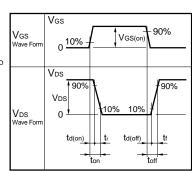
2. Starting $T_{ch} = 25^{\circ}C$, $V_{DD} = 150 \text{ V}$, $R_{G} = 25 \Omega$, $V_{GS} = 20 \rightarrow 0 \text{ V}$

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

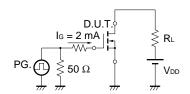


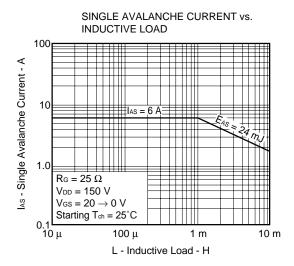
ELECTRICAL CHARACTERISTICS (TA = 25°C)

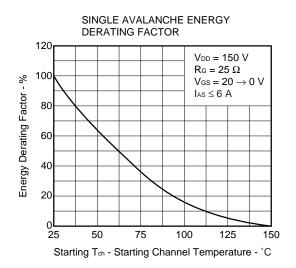

Characteristics	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Zero Gate Voltage Drain Current	IDSS	V _{DS} = 600 V, V _{GS} = 0 V			100	μΑ
Gate Leakage Current	Igss	VGS = ±30 V, VDS = 0 V			±100	nA
Gate Cut-off Voltage	V _{GS(off)}	V _{DS} = 10 V, I _D = 1 mA	2.5		3.5	>
Forward Transfer Admittance	y _{fs}	V _{DS} = 10 V, I _D = 3.0 A	2.0			S
Drain to Source On-state Resistance	R _{DS(on)}	Vgs = 10 V, ID = 3.0 A		0.9	1.2	Ω
Input Capacitance	Ciss	V _{DS} = 10 V		1100		pF
Output Capacitance	Coss	Vgs = 0 V		200		pF
Reverse Transfer Capacitance	Crss	f = 1 MHz		20		pF
Turn-on Delay Time	t d(on)	V _{DD} = 150 V, I _D = 3.0 A		18		ns
Rise Time	tr	V _{GS(on)} = 10 V		12		ns
Turn-off Delay Time	t _{d(off)}	$R_G = 10 \Omega$, $R_L = 50 \Omega$		50		ns
Fall Time	tf			15		ns
Total Gate Charge	QG	V _{DD} = 450 V		26		nC
Gate to Source Charge	Qgs	Vgs = 10 V		6		nC
Gate to Drain Charge	Q _{GD}	ID = 6.0 A		10		nC
Body Diode Forward Voltage	V _{F(S-D)}	IF = 6.0 A, Vgs = 0 V		1.0		V
Reverse Recovery Time	trr	IF = 6.0 A, VGS = 0 V		1.4		μs
Reverse Recovery Charge	Qrr	$di/dt = 50 A/\mu s$	_	6.5		μC


* TEST CIRCUIT 1 AVALANCHE CAPABILITY

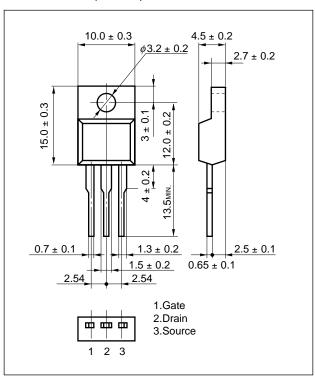
$\begin{array}{c} \text{D.U.T.} \\ \text{RG} = 25 \ \Omega \\ \text{VGS} = 20 \rightarrow 0 \ \text{V} \end{array} \begin{array}{c} \text{PG.} \\ \text{PS.} \\ \text{PS.} \\ \text{M.S.} \end{array} \begin{array}{c} \text{D.U.T.} \\ \text{VDD.} \\ \text{M.S.} \end{array}$

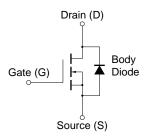



TEST CIRCUIT 2 SWITCHING TIME



TEST CIRCUIT 3 GATE CHARGE





PACKAGE DRAWING (Unit: mm)

Isolated TO-220(MP-45F)

EQUIVALENT CIRCUIT

Remark Strong electric field, when exposed to this device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred.