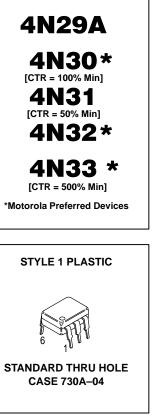
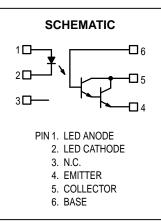


6-Pin DIP Optoisolators Darlington Output

The 4N29/A, 4N30, 4N31, $4N32^{(1)}$ and $4N33^{(1)}$ devices consist of a gallium arsenide infrared emitting diode optically coupled to a monolithic silicon photodarlington detector.

This series is designed for use in applications requiring high collector output currents at lower input currents.


- Higher Sensitivity to Low Input Drive Current
- Meets or Exceeds All JEDEC Registered Specifications
- To order devices that are tested and marked per VDE 0884 requirements, the suffix "V" must be included at end of part number. VDE 0884 is a test option.


Applications

- Low Power Logic Circuits
- Interfacing and coupling systems of different potentials and impedances
- Telecommunications Equipment
- Portable Electronics
- Solid State Relays

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit	
INPUT LED				
Reverse Voltage	VR	3	Volts	
Forward Current — Continuous	١ _F	60	mA	
LED Power Dissipation @ T _A = 25°C Derate above 25°C	PD	120 1.41	mW mW/°C	
OUTPUT DETECTOR				
Collector–Emitter Voltage	VCEO	30	Volts	
Emitter–Collector Voltage	VECO	5	Volts	
Collector-Base Voltage	VCBO	30	Volts	
Collector Current — Continuous	IC	150	mA	
Detector Power Dissipation @ T _A = 25°C Derate above 25°C	PD	150 1.76	mW mW/°C	
TOTAL DEVICE	•	•		
Isolation Surge Voltage ⁽²⁾ (Peak ac Voltage, 60 Hz, 1 sec Duration)	VISO	7500	Vac(pk)	
Total Device Power Dissipation @ T _A = 25°C Derate above 25°C	PD	250 2.94	mW mW/°C	
Ambient Operating Temperature Range ⁽³⁾	TA	-55 to +100	°C	
Storage Temperature Range ⁽³⁾	T _{stg}	-55 to +150	°C	
Soldering Temperature (10 sec, 1/16" from case)	т	260	°C	

1. Difference in 4N32 and 4N33 is JEDEC Registration for VISO only. All Motorola 6–Pin devices exceed JEDEC specification and are 7500 Vac(pk). The same applies for 4N29 and 4N30.

2. Isolation surge voltage is an internal device dielectric breakdown rating. For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6 are common.

3. Refer to Quality and Reliability Section in Opto Data Book for information on test conditions. **Preferred** devices are Motorola recommended choices for future use and best overall value.

GlobalOptoisolator is a trademark of Motorola, Inc.

4N29

4N29 4N29A 4N30 4N31 4N32 4N33

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)⁽¹⁾

Characteristic	2	Symbol	Min	Typ (1)	Max	Unit
INPUT LED				1		•
*Reverse Leakage Current (V _R = 3 V, R _L = 1 M ohms)		IR	—	0.05	100	μΑ
*Forward Voltage (I _F = 10 mA)		VF	—	1.34	1.5	Volts
Capacitance ($V_R = 0 V$, f = 1 MHz)		С	—	1.8	—	pF
OUTPUT DETECTOR (T _A = 25° C and I _F =	0, unless otherwise noted)		-			
*Collector–Emitter Dark Current (V _{CE} = 10 V, Base Open)		ICEO	_	—	100	nA
*Collector–Base Breakdown Voltage ($I_C = 100 \ \mu$ A, $I_E = 0$)		V(BR)CBO	30	—	—	Volts
*Collector–Emitter Breakdown Voltage ($I_C = 100 \ \mu$ A, $I_B = 0$)		V(BR)CEO	30	—	—	Volts
*Emitter–Collector Breakdown Voltage $(I_E = 100 \ \mu A, I_B = 0)$		V(BR)ECO	5	—	—	Volts
DC Current Gain $(V_{CE} = 5 V, I_C = 500 \mu A)$		hFE	_	16K	—	—
COUPLED ($T_A = 25^{\circ}C$ unless otherwise no	ted)	•	•	•		-
*Collector Output Current ⁽³⁾ (V _{CE} = 10 V, I _F = 10 mA)	4N32, 4N33 4N29, 4N30 4N31	I _C (CTR) ⁽²⁾	50 (500) 10 (100) 5 (50)			mA (%)
Isolation Surge Voltage ^(4,5) (60 Hz ac Peak, 1 Second)	4N29/A, 4N30, 31, 32, 33 *4N29, 4N32 *4N30, 4N31, 4N33	VISO	7500 2500 1500		 	Vac(pk)
Isolation Resistance ⁽⁴⁾ (V = 500 V)		RISO	_	10 ¹¹	—	Ohms
*Collector–Emitter Saturation Voltage ⁽³⁾ (I _C = 2 mA, I _F = 8 mA)	4N31 4N29, 4N30, 4N32, 4N33	VCE(sat)			1.2 1	Volts
Isolation Capacitance(4) (V = 0 V, f = 1 MHz)		C _{ISO}	_	0.2	—	pF
Turn–On Time ⁽⁶⁾ (I _C = 50 mA, I _F = 200 mA, V _{CC} = 10 V)		ton	_	0.6	5	μs
Turn–Off Time(6) (I _C = 50 mA, I _F = 200 mA, V _{CC} = 10 V)	4N29, 30, 31 4N32, 33	toff		17 45	40 100	μs

* Indicates JEDEC Registered Data. All Motorola 6-pin devices have VISO rating of 7500 Vac(pk).

1. Always design to the specified minimum/maximum electrical limits (where applicable). 2. Current Transfer Ratio (CTR) = $I_C/I_F \times 100\%$. 3. Pulse Test: Pulse Width = 300 µs, Duty Cycle $\leq 2\%$.

4. For this test, Pins 1 and 2 are common and Pins 4, 5 and 6 are common.

5. Isolation Surge Voltage, V_{ISO} , is an internal device dielectric breakdown rating.

6. For test circuit setup and waveforms, refer to Figure 11.