

TRENCHSTOP[™] RC-Series for hard switching applications

IGBT with integrated diode in packages offering space saving advantage

Features:

TRENCHSTOP™ Reverse Conducting (RC) technology for 600V applications offering

- Optimised V_{CEsat} and V_F for low conduction losses
- Smooth switching performance leading to low EMI levels
- Very tight parameter distribution
- Operating range of 1 to 20kHz
 Maximum junction temperature 175°C
- Short circuit capability of 5µs
- Best in class current versus package size performance
- Qualified according to JEDEC for target applications
- Pb-free lead plating; RoHS compliant (for PG-TO252: solder temperature 260°C, MSL1)
- Complete product spectrum and PSpice Models: http://www.infineon.com/igbt/

· Consumer motor drives

Key Performance and Package Parameters

Туре	V CE	<i>I</i> c	V _{CEsat} , T _{vj} =25°C	T _{vjmax}	Marking	Package
IKD06N60R	600V	6A	1.65V	175°C	K06R60	PG-TO252-3

IKD06N60R

TRENCHSTOP[™] RC-Series for hard switching applications

Maximum Ratings

For optimum lifetime and reliability, Infineon recommends operating conditions that do not exceed 80% of the maximum ratings stated in this datasheet.

Parameter	Symbol	Value	Unit
Collector-emitter voltage, <i>T</i> _{vj} ≥ 25°C	V _{CE}	600	V
DC collector current, limited by T_{vjmax} $T_{\text{c}} = 25^{\circ}\text{C}$ $T_{\text{c}} = 100^{\circ}\text{C}$	Ic	12.0 6.0	А
Pulsed collector current, t_p limited by T_{vjmax}	I _{Cpuls}	18.0	Α
Turn off safe operating area $V_{CE} \le 600V$, $T_{vj} \le 175^{\circ}C$, $t_p = 1 \mu s$	-	18.0	Α
Diode forward current, limited by T_{vjmax} $T_{\text{c}} = 25^{\circ}\text{C}$ $T_{\text{c}} = 100^{\circ}\text{C}$	IF	12.0 6.0	А
Diode pulsed current, t_p limited by T_{vjmax}	I _{Fpuls}	18.0	Α
Gate-emitter voltage	V _{GE}	±20	V
Short circuit withstand time V_{GE} = 15.0V, $V_{\text{CC}} \le 400\text{V}$ Allowed number of short circuits < 1000 Time between short circuits: \ge 1.0s T_{vj} = 150°C	<i>t</i> sc	5	μs
Power dissipation $T_c = 25^{\circ}C$	P _{tot}	100.0	W
Operating junction temperature	T _{vj}	-40+175	°C
Storage temperature	T _{stg}	-55+150	°C
Soldering temperature, reflow soldering (MSL1 according to JEDEC J-STA-020)		260	°C

Thermal Resistance

Datasheet

Danamatan	Symbol	Conditions	Value			11:4
Parameter			min.	typ.	max.	Unit
R _{th} Characteristics	•		•	•	'	•
IGBT thermal resistance, ¹⁾ junction - case	R _{th(j-c)}		-	-	1.50	K/W
Diode thermal resistance, ²⁾ junction - case	R _{th(j-c)}		-	-	3.60	K/W
Thermal resistance, min. footprint junction - ambient	R _{th(j-a)}		-	-	75	K/W
Thermal resistance, 6cm² Cu on PCB junction - ambient	R _{th(j-a)}		-	-	50	K/W

¹⁾ Rth/Zth based on single cooling pulse. Please be aware that a correct Rth measurement of the IGBT, is not possible using a thermocouple. ²⁾ Rth/Zth based on single cooling pulse. Please be aware that a correct Rth measurement of the Diode, is not possible using a thermocouple.