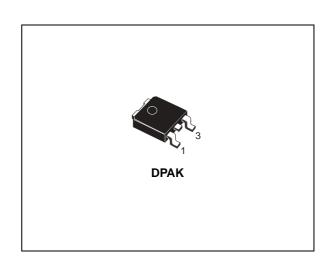


STGD10NC60H

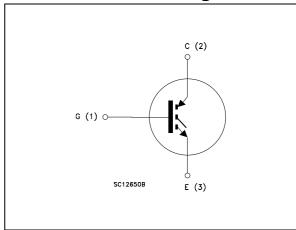
N-channel 10A - 600V - DPAK Very fast PowerMESH™ IGBT

Features

Туре	V _{CES}	V _{CE(sat)} (Max)@ 25°C	I _C @100°C
STGD10NC60H	600V	< 2.5V	10A


- Low on-voltage drop (V_{cesat})
- Low C_{RES} / C_{IES} ratio (no cross-conduction susceptibility)

Description


Using the latest high voltage technology based on a patented strip layout, STMicroelectronics has designed an advanced family of IGBTs, the PowerMESHTM IGBTs, with outstanding performances. The suffix "H" identifies a family optimized for high frequency applications in order to achieve very high switching performances (reduced tfall) manta in ing a low voltage drop.

Applications

- High frequency motor controls
- SMPS and PFC in both hard switch and resonant topologies
- Motor drivers

Internal schematic diagram

Order code

Part number	Marking	Package	Packaging
STGD10NC60H	GD10NC60H	DPAK	Tape & reel

STGD10NC60H Electrical ratings

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage (V _{GS} = 0)	600	V
I _C ⁽¹⁾	Collector current (continuous) at T _C = 25°C	20	А
I _C ⁽¹⁾	Collector current (continuous) at T _C = 100°C	10	А
I _{CL} ⁽²⁾	Collector current (pulsed)	40	Α
V _{GE}	Gate-emitter voltage	±20	V
P _{TOT}	Total dissipation at T _C = 25°C	60	W
T _j	Operating junction temperature	- 55 to 150	°C

^{1.} Calculated according to the iterative formula:

$$I_{C}(T_{C}) = \frac{T_{JMAX}^{-T}C}{R_{THJ-C}^{\times V}CESAT(MAX)^{(T}C, \ ^{I}C)}$$

2. V_{clamp} =480V, Tj=150°C, R_G=10 Ω , V_{GE}=15V

Table 2. Thermal resistance

Symbol	Parameter	Value	Unit
Rthj-case	Thermal resistance junction-case max	2.08	°C/W
Rthj-amb	Thermal resistance junction-ambient max	62.5	°C/W